Samarium¹⁵³-lexidronam for bone pain due to skeletal metastases

August 1999

MSAC application 1016

Final assessment report

© Commonwealth of Australia 1999

ISBN 0 642 41513 7

First printed August 1999

This work is copyright. Apart from any use as permitted under the Copyright Act 1968 no part may be reproduced by any process without written permission from AusInfo. Requests and inquiries concerning reproduction and rights should be directed to the Manager, Legislative Services, AusInfo, GPO Box 1920, Canberra, ACT, 2601.

Electronic copies of the report can be obtained from the Medicare Service Advisory Committee's Internet site at:

http://www.health.gov.au/haf/msac

Hard copies of the report can be obtained from:

The Secretary Medicare Services Advisory Committee Department of Health and Aged Care Mail Drop 107 GPO Box 9848 Canberra ACT 2601

Enquiries about the content of the report should be directed to the above address.

The Medicare Services Advisory Committee is an independent committee which has been established to provide advice to the Commonwealth Minister for Health and Aged Care on the strength of evidence available on new medical technologies and procedures in terms of their safety, effectiveness and cost-effectiveness. This advice will help to inform Government decisions about which new medical services should attract funding under Medicare.

This report was prepared by the Medicare Services Advisory Committee (MSAC). The report was endorsed by the Commonwealth Minister for Health and Aged Care on 9 August 1999.

Publication approval number: 2594

MSAC recommendations do not necessarily reflect the views of all individuals who participated in the MSAC evaluation.

Contents

Executive summary
Introduction1
Background2
Samarium ¹⁵³ -lexidronam2
Clinical need/burden of disease3
Existing procedures3
Comparator3
Marketing status of the therapeutic procedure4
Current reimbursement arrangement4
Approach to assessment
Review of literature
Expert advice6
Results of assessment
Is it safe?
Other adverse events9
Is it effective?11
What are the economic considerations?17
Other considerations
Conclusions
Safety
Effectiveness19
Cost-effectiveness19
Other considerations19
Recommendation
Appendix A MSAC terms of reference and membership
Appendix B Supporting committee22
Abbreviations
References

Tables

Table 1	Differences between ¹⁵³ Sm-lexidronam and Strontium89	4
Table 2	Designation of levels of evidence	5
Table 3	Characteristics of the clinical trials	7
Table 4:	Adverse events of systemic ¹⁵³ Sm-lexidronam treatment	8
Table 5	Adverse Effects of ¹⁵³ Sm-lexidronam treatment based on two four-week RCTs	.10
Table 6	Haematological toxicity of Strontium ⁸⁹	.10
Table 7	Comparative Safety of ¹⁵³ Sm-lexidronam and Strontium89	.10
Table 8	Main outcomes	.12
Table 9	Comparison of ¹⁵³ Sm-lexidronam and Strontium ⁸⁹ in pain relief ^a	.13
Table 10	O ¹⁵³ Sm-lexidronam—managing bone pain due to skeletal metastases from various cancer types	.15

The procedure

Samarium¹⁵³-lexidronam pentasodium (¹⁵³Sm-lexidronam) is a therapeutic radiopharmaceutical. It is a complex consisting of a metal component (isotope Samarium¹⁵³, which emits a medium energy β -particle and an imagable γ -photon) and a ligand (ethylene diamine tetramethylene phosphonic acid—EDTMP). The complex is a 'bone-seeker', that is, it has an affinity for skeletal tissue and concentrates in areas of increased bone metabolic activity, for example, metastatic bone lesions. ¹⁵³Sm-lexidronam is given slowly through an intravenous line over a period of one minute. Following systemic administration, ¹⁵³Sm-lexidronam concentrates in areas of bone growth, especially the layer of osteoid undergoing mineralisation.

Medicare Services Advisory Committee — role and approach

The Medicare Services Advisory Committee (MSAC) is a key element of a measure taken by the Commonwealth Government to strengthen the role of evidence in health financing decisions in Australia. MSAC advises the Minister for Health and Aged Care on the evidence relating to the safety, effectiveness and cost-effectiveness of new medical technologies and procedures, and under what circumstances public funding should be supported.

A rigorous assessment of the available evidence is thus the basis of decision making when funding is sought under Medicare. The medical literature on the new technology is searched and the evidence is assessed and classified according to the National Health and Medical Research Council (NHMRC) four-point hierarchy of evidence. A supporting committee with expertise in this area evaluates the evidence and provides advice to MSAC.

Assessment of Samarium¹⁵³-lexidronam for bone pain due to skeletal metastases

Many clinical studies have been undertaken on ¹⁵³Sm-lexidronam to date and this assessment is based on the best available data, that is, randomised controlled trials (RCTs). The main clinical data has been obtained from two ¹⁵³Sm-lexidronam RCTs and three Strontium⁸⁹RCTs.

There is a lack of clinical trial data directly comparing ¹⁵³Sm-lexidronam with Strontium⁸⁹. Therefore, the comparative effectiveness has been assessed using placebo as the common comparator. The comparability of the placebo arms in ¹⁵³Sm-lexidronam trials and Strontium⁸⁹ trials is justified.

Clinical need

Bone metastases are common in carcinoma of the prostate, breast and lung, and are often manifested by multiple lesions with significant pain and pathologic fracture. The prevalence of prostate, breast and lung cancer was about 14,500 per 100,000 population in Australia with about 36 per cent (5,300) of these patients suffering from bony metastases¹. Patients with intractable multiple lesion bone pain are usually at the end-stage of cancer, with a short life expectancy. The primary aim of clinical management is to control the pain and provide a better quality of life for patients and their families.

¹⁵³Sm-lexidronam is expected to be used as a second-line 'add-on' treatment to standard clinical management strategies, such as opioid and narcotic analgesics, when chemotherapy, hormone therapy and external-beam radiotherapy have failed or are unsuitable.

Safety

¹⁵³Sm-lexidronam appears, from the available evidence, to be no worse than Strontium⁸⁹ in terms of haematological toxicity and other adverse events. However, it should be noted that, though the prognosis and life expectancy of end-stage cancer patients are generally poor and the majority of patients will receive a single dose, repeated treatment of ¹⁵³Sm-lexidronam remains an issue. In particular, the toxicity associated with repeated injection of ¹⁵³Sm-lexidronam should be investigated.

Effectiveness

It is demonstrated that ¹⁵³Sm-lexidronam is at least as effective as Strontium⁸⁹ in relieving bone pain due to skeletal metastases from carcinoma of the prostate. ¹⁵³Sm-lexidronam has also been demonstrated to be effective in relieving bone pain due to skeletal metastases from carcinoma of the breast.

Decreased use of analgesics following ¹⁵³Sm-lexidronam administration was demonstrated in one of the two RCTs². However, no comparison could be made with Strontium⁸⁹ due to the different endpoints used in reporting results.

Cost-effectiveness

As ¹⁵³Sm-lexidronam seems as effective as Strontium⁸⁹ in pain relief and no worse than Strontium⁸⁹ in terms of toxicity, a cost minimisation analysis is appropriate. However, as the proposed fee for ¹⁵³Sm-lexidronam is much lower than that for Strontium⁸⁹ and insufficient costing data has been provided, an economic analysis has not been conducted.

Recommendation

On the basis of evidence supporting its safety, effectiveness and cost-effectiveness, the supporting committee for this application recommends that ¹⁵³Sm-lexidronam be subsidised for the relief of bone pain in patients with skeletal metastases (as indicated by a positive bone scan) from the following malignancies:

- i. carcinoma of the prostate, where hormonal therapy has failed; or
- ii. carcinoma of the breast, where hormonal therapy and chemotherapy have failed;

and either:

- a. the disease is poorly controlled by conventional radiotherapy; or
- b. conventional radiotherapy is inappropriate, due to the wide distribution of sites of bone pain.

Introduction

The Medicare Services Advisory Committee (MSAC) has assessed Samarium¹⁵³lexidronam pentasodium (¹⁵³Sm-lexidronam) injection for relief of bone pain in patients with skeletal metastases confirmed by a positive bone scan. MSAC evaluates new health technologies and procedures for which funding is sought under the Medicare Benefits Schedule (MBS) in terms of their safety, effectiveness and cost-effectiveness, while taking into account other issues such as access and equity. MSAC adopts an evidence-based approach to its assessments, based on reviews of the scientific literature and other information sources, including clinical expertise.

MSAC's terms of reference and membership are at Appendix A. MSAC is a multidisciplinary expert body, comprising members drawn from disciplines such as diagnostic imaging, pathology, surgery, internal medicine and general practice, clinical epidemiology, health administration and health economics.

This report summarises the assessment of current evidence for ¹⁵³Sm-lexidronam injection for the treatment of bone pain in patients with skeletal metastases.

Samarium¹⁵³-lexidronam

The procedure

¹⁵³Sm-lexidronam is a therapeutic radiopharmaceutical. It is a complex consisting of a metal component (isotope Samarium¹⁵³, which emits a medium energy β-particle and an imagable γ-photon) and a ligand (ethylene diamine tetramethylene phosphonic acid—EDTMP). The complex is a 'bone-seeker', that is, it has an affinity for skeletal tissue and concentrates in areas of increased bone metabolic activity, for example, metastatic bone lesions. The pathophysiology of pain in patients with bone neoplasia and also the mechanism of ¹⁵³Sm-lexidronam in pain relief are still unknown. However, it is believed that ¹⁵³Sm-lexidronam may interfere with or destroy cells elaborating the pain-producing substances (prostaglandins, kinins, growth factors etc).

¹⁵³Sm-lexidronam is available as a sterile solution of 2.0 GBq/mL in a 3 mL, rubberstoppered glass vial, ie each vial contains 6 GBq. ¹⁵³Sm-lexidronam is given slowly through an intravenous line over a period of one minute. The recommended dosage is 37 MBq/kg. Sufficient fluid intake is strongly suggested before and six hours after injection. The half-life of ¹⁵³Sm-lexidronam is 1.9 days. Urinary excretion will be complete six hours after injection.

As indicated in the Product Information and supported by the Therapeutic Goods Administration (TGA) delegate, ¹⁵³Sm-lexidronam can be administered repeatedly at a minimum interval of eight weeks, if necessary.

Following systemic administration, ¹⁵³Sm-lexidronam concentrates in areas of bone growth, especially the layer of osteoid undergoing mineralisation. The ratio of distribution in bone lesion to normal bone is about 5:1.

Intended purpose

¹⁵³Sm-lexidronam injection is proposed for the relief of bone pain in patients with skeletal metastases as indicated by a positive bone scan.

¹⁵³Sm-lexidronam is expected to be used as a second-line 'add-on' treatment to standard clinical management strategies such as opioid and narcotic analgesics when chemotherapy, hormone therapy and external-beam radiotherapy have failed or are unsuitable. It is administered in an out-patient setting in nuclear medicine facilities or radiation oncology departments. It should be administered by suitably qualified and licensed medical specialists.

It is advisable that patients are first assessed by a radiation oncologist to ensure that external-beam radiotherapy is inappropriate.

Clinical need/burden of disease

Bone metastases are common in carcinoma of the prostate, breast and lung, and are often manifested by multiple lesions with significant pain, and pathologic fracture. The prevalence of prostate, breast and lung cancer was about 14,500 per 100,000 population in Australia with about 36 per cent (5,300) of these patients suffering from bony metastases¹. Patients with intractable multiple lesion bone pain are usually at the end-stage of cancer, with a short life expectancy. The primary aim of clinical management is to control the pain and provide a better quality of life for patients and their families.

Existing procedures

Currently, the clinical management strategy for bony metastases includes:

- chemotherapy or hormone therapy;
- opioid narcotic analgesics;
- external-beam radiotherapy, ie localised skeletal radiotherapy and hemi-body radiation therapy (HBRT); and
- systemic administration of radiotherapeutic agents, eg Strontium⁸⁹ injection.

Chemotherapy or hormone therapies may be effective in controlling the malignancy but even responding cases eventually become refractory to treatment. Narcotic analgesics often require dosage increments over time and are associated with constipation and other adverse effects. External-beam radiotherapy is effective in most patients with localised bone lesions. However, its application is limited in cases where extensive bony lesions are involved. Radiotherapeutic agents such as Strontium⁸⁹ have been used for palliation of osteoblastic skeletal metastases.

Comparator

Strontium⁸⁹ is the only systemically administrable radiotherapeutic agent that has a therapeutic mechanism similar to that of ¹⁵³Sm-lexidronam. Strontium⁸⁹ is currently listed on the MBS for a similar indication as that applying to ¹⁵³Sm-lexidronam, though not as broad as that for ¹⁵³Sm-lexidronam. Therefore, Strontium⁸⁹ is considered to be an appropriate comparator for ¹⁵³Sm-lexidronam in the treatment of bone pain due to skeletal metastases.

The differences between ¹⁵³Sm-lexidronam and Strontium⁸⁹ are summarised in Table 1. The main difference is that ¹⁵³Sm-lexidronam has a broader indication.

Estimated utilisation

Of the 5,300 patients per year in Australia who are estimated to suffer from bony metastases, 75 per cent (3,975 patients) will be successfully treated by chemotherapy, hormone therapy and/or external-beam radiotherapy. Therefore, there will be about 1,325 patients per year that require ¹⁵³Sm-lexidronam, or about 2,000 treatments, if more than one treatment is required per patient per year.

Table 1Differences between 153Sm-lexidronam and Strontium89

¹⁵³ SM-LEXIDRONAM	STRONTIUM ⁸⁹
Indicated for the relief of bone pain in patients with skeletal metastases as indicated by a positive bone scan.	Indicated for painful bony metastases from carcinoma of the prostate where hormone therapy has failed and either:
	the disease is poorly controlled by conventional radiotherapy; or
	conventional radiotherapy is inappropriate, due to the wide distribution of sites of bone pain.
no restriction on the origin or the type of cancer	restricted to prostate cancer
no restriction regarding previous treatment	indicated for those who have failed chemotherapy or hormone therapy, and conventional radiotherapy
shorter half-life: 1.9 days	longer half-life: 50.6 days
emits lower energy, mean β particle energy 0.23MeV	emits higher energy, mean β particle energy 0.60MeV
effect peaks 4 to 8 weeks, lasts up to 4 months	effect peaks at 6 weeks, lasts up to 3-6 months
recommended dosage: 37 MBq/kg	recommended dosage: \leq 2 MBq/kg
repeated treatment given at intervals of no less than 8 weeks	repeated treatment given at intervals of no less than 3 months

This estimation does not take into consideration the likely market share of Strontium⁸⁹, which is indicated for nearly half of the potentially eligible patients for ¹⁵³Sm-lexidronam (among 5,300 patients with bony metastases, 2,500 have prostate cancer, ie 2,500/5,300 = 47%). Therefore, 2,000 ¹⁵³Sm-lexidronam treatments per year is likely to be an overestimation.

If ¹⁵³Sm-lexidronam is proved to be at least equally effective, with a similar adverse effect profile, some replacement in the market by Strontium⁸⁹ is expected. In addition, the shorter half-life of ¹⁵³Sm-lexidronam may be an advantage in allowing a more rapid haematological recovery if the patient experiences significant myelosuppression with radioisotope treatment.

Marketing status of the therapeutic procedure

¹⁵³Sm-lexidronam is registered on the Australian Register of Therapeutic Goods (ARTG) for the relief of bone pain in patients with metastatic bone lesions demonstrated on radionuclide bone scan. The registration number is AUST R 62521. The proposed indication assessed by MSAC is within the indication approved by the Therapeutic Goods Administration (TGA).

Current reimbursement arrangement

Currently there is no specific MBS item number for ¹⁵³Sm-lexidronam.

Approach to assessment

In its assessment, MSAC undertook a review of the literature available on ¹⁵³Smlexidronam in the treatment of bone pain due to skeletal metastases and convened a supporting committee to evaluate the evidence of the treatment and provide expert advice.

Review of literature

Literature search strategy

The medical literature was searched to identify relevant studies and reviews for the period between 1966 and September 1998. Searches were conducted via Medline, HealthStar, Toxline, Cancerlit, Pascal, Biosis, Derwent, SciSearch, Elsevier Biobase, Embase, Current Contents and Cochrane Library.

The search terms used included 'samarium', 'samarium¹⁵³', 'samarium¹⁵³ EDTMP', 'strontium', 'strontium⁸⁹'and 'bone pain due to skeletal metastases', 'palliative therapy' and 'randomised controlled trial'.

Articles selected were those that reported on randomised controlled trials (phase III) comparing ¹⁵³Sm-lexidronam and placebo in patients with bony metastases, randomised controlled clinical trials (phase III) comparing Strontium⁸⁹ and placebo in patients with bony metastases and phase I/II trials for assessing safety. General reviews and dose optimisation studies were excluded.

Among the 75 citations identified, 30 publications were requested after applying the inclusion and exclusion criteria described above. From these, the evidence presented in six publications was assessed and classified according to the NHMRC-revised hierarchy of evidence shown in Table 2.

TGA evaluation reports on ¹⁵³Sm-lexidronam and Strontium⁸⁹ were also reviewed, in which the efficacy and adverse effects were analysed.

Table 2Designation of levels of evidence

I	Evidence obtained from a systematic review of all relevant randomised controlled trials.
П	Evidence obtained from at least one properly designed randomised controlled trial.
III-1	Evidence obtained from well-designed pseudo-randomised controlled trials (alternate allocation or some other method).
III-2	Evidence obtained from comparative studies with concurrent controls and allocation not randomised (cohort studies), case-control studies or interrupted time series with control group.
III-3	Evidence obtained from comparative studies with historical control, two and more single arm studies or interrupted time series without a parallel control group.
IV	Evidence obtained from case series, either post-test or pre-test and post-test.
Source:	NHMRC ³

Characteristics of the studies

The characteristics of the trials are summarised in Table 3. Both ¹⁵³Sm-lexidronam trials^{2,4} recruited patients with a life expectancy of at least four months, and reported the results on the 'intention-to-treat' population.

There is a lack of clinical trial data directly comparing ¹⁵³Sm-lexidronam with Strontium⁸⁹. Therefore, the comparative effectiveness has been assessed using placebo as the common comparator. The comparability of the placebo arms in ¹⁵³Sm-lexidronam trials and Strontium⁸⁹ trials is justified. The placebo used in the trials was normal saline with or without an inactive agent to colour the solution for the purpose of blinding.

¹⁵³Sm-lexidronam versus placebo arm

Two RCTs^{2,4} are included in this arm. The trial conducted by Resche et al was a randomised dose comparison trial without placebo control, and is therefore excluded from further discussion⁵. However, it is worth noting that the trial concluded the 1.0mCi/kg dose of ¹⁵³Sm-lexidronam is safe and effective for pain relief. It should be noted that analgesics were continued in both ¹⁵³Sm-lexidronam and placebo groups.

Strontium⁸⁹ versus placebo arm

Three RCTs^{6,7,8} were included in this arm. It should be noted that analgesics were continued in both Strontium⁸⁹ and placebo groups.

The quality and validity of the three Strontium⁸⁹ trials are considered. The need to select the best available Strontium⁸⁹ trials to enable a comparison with ¹⁵³Sm-lexidronam is also recognised. It is noted that all three Strontium⁸⁹ trials included used treatment regimes outside the TGA's recommendations, which became effective in October 1995.

In two RCTs^{7,8} the dosage employed exceeded the approved 100–150MBq per administration, and in two RCTs^{6,7} a repeat treatment was given at four to five weeks in contrast to the recommended interval of \geq 3 months. It was revealed in the TGA clinical evaluation report for Strontium⁸⁹ that increasing dosage to up to 400MBq per administration may not alter clinical effectiveness, though it could attribute to platelet toxicity.

It is also recognised that, although these studies were all randomised trials in design, there was a lack of rigour in terms of analysing results on 'intention-to-treat' population and avoiding bias in assessing subjective endpoints, such as pain score⁷. The trial conducted by Porter was a two-phase RCT designed to assess the effectiveness of Strontium⁸⁹ as adjunctive treatment to local external-beam radiotherapy (LRT)⁸. Patients were randomly allocated to Strontium⁸⁹ therapy or placebo in the second phase following LRT within seven days. Nevertheless, the difference in pain relief may arguably reflect the difference between Strontium⁸⁹ and placebo, though the trial provided more accurate information on toxicity of adjunctive treatment with Strontium⁸⁹.

Representativeness

It appears that the trial population is representative of patient groups in respect of whom funding is sought under the MBS.

Expert advice

A supporting committee with expertise in internal medicine, radiation oncology and nuclear medicine was established to evaluate the evidence and provide advice to MSAC from a clinical perspective. In selecting members for supporting committees, MSAC's practice is to approach the appropriate medical colleges, specialist societies and associations for nominees. Membership of the supporting committee is provided at Appendix B.

Trial	Study design	Quality	Subjects	Drug dose	Outcome
Serafini AN ⁴ , 1998	RCT (phase III), multicentre, double	NHMRC Level II	n=118 median age: 65 (24–83),	single injection	area under pain curve (visual/
	blind, 'head-to-head'		prostate cancer: 80,	0.5mCi/kg,	analog);
	placebo controlled Follow-up: 4 months	6/6	breast cancer: 21	0.5mci/kg, n=40	physicians'
	ruilow-up. 4 montris		lung cancer: 6		assessment (PGA);
			other cancer: 11	1.0mCi/kg, n=39	analgesic use
			previous treatment: surgery	1.0moi/kg, 11–37	0
			(85–95%), hormone (82– 85%), radiation (73–77%), chemotherapy (23–38%).	placebo, n=39	
			concomitant treatment: analgesics		
Quick D ² ,	RCT (phase III),	NHMRC	n=152	single injection	area under pain
1997	multicentre, double blind, 'head-to-head' placebo controlled	Level II	median age: ? (46-86),	¹⁵³ Sm	curve (visual/analog);
			prostate cancer: 152	1.0mCi/kg,	(visual/arialog); pain score;
(abstract)	Follow-up: 4 months	4/6		n=101	analgesic use
			previous treatment: not reported		analycsic use
			concomitant treatment:	placebo, n=51	
			analgesics		
Lewington	RCT (phase III),	NHMRC	n=32 (27 evaluated)	injection every 5	clinical response
VJ ⁶ , 1991	multicentre, double blind, 'head-to-head'	Level II	median age: ? (64-79)	weeks ⁸⁹ Sr	(5 Grades):
	placebo controlled	- //	prostate cancer: 32	150MBq	G1: deteriorated
	Follow-up: 5 weeks	5/6	previous treatment:	n=12	G2: no change
			hormone, radiation. concomitant treatment:	placebo (⁸⁸ Sr)	G3: some improvement
			analgesics	n=15	G4: substantial improvement
					G5: pain-free
Buchali K ⁷ ,	RCT, double blind,	NHMRC	n=49	monthly injection	pain relief
1988	'head-to-head' placebo controlled	Level II	mean age: 67 (64–79)	⁸⁹ Sr	survival
	•		prostate cancer: 32	3x75MBq	
	Follow-up: up to 3 years	2/6	previous treatment: not reported	n=25	
				placebo	
			concomitant treatment: analgesics	n=24	
Porter AT ⁸ , 1993	RCT (phase III), multicentre, double blind, 'head-to-head' placebo controlled	NHMRC Level II	n=126	single injection	pain relief
			median age: 71 (48-86)	⁸⁹ Sr	analgesic use
			prostate cancer: 126	400MBq	quality of life
	, Follow-up: 21 months	5/6	previous treatment: surgery, hormone. Patients underwent radiotherapy after randomisation, then to receive ⁸⁹ Sr or placebo within 7 days.	n=67 placebo (^{es} Sr) n=59	survival
			concomitant treatment: analgesics		

Table 3 Characteristics of the clinical trials

?: Could not be determined from study

Results of assessment

No systematic reviews of ¹⁵³Sm-lexidronam were retrieved. This systematic review is based on RCTs, with the main clinical data obtained from two ¹⁵³Šm-lexidronam RCTs^{2,4} and three Strontium⁸⁹ RCTs^{6,7,8}.

Is it safe?

Haematological toxicity

¹⁵³Sm-lexidronam

The haematological toxicity profile of ¹⁵³Sm-lexidronam was based on RCTs^{2,4,5} and on an 'intention-to-treat' population. It includes 95 per cent Confidence Interval and predictive values of the differences (Table 4). As reported in RCTs^{2,4,5}, and additional data submitted to the TGA, the main toxicity of systemic administration of ¹⁵³Smlexidronam was reversible haematological toxicity.

Table 4: Adverse events of systemic 153Sm-lexidronam treatmer	nt
---	----

Adverse event	¹⁵³ Sm-lexidronam (1.0mCi/kg) n=193		Placebo n=85		Difference (95% CI), p value	
Haemoglobin, at 7 weeks						
Grade* 0–2 toxicity	160	(83%)	73	(86%)		
Grade 3 toxicity	17	(9%)	6	(7%)	2% (-4%, 8%), p=0.41	
Grade 4 toxicity	3	(1.5%)	1	(1%)	1% (-0.4%, 3%), p=0.68	
Platelet, at 4 weeks						
Grade 0-2 toxicity	168	(87%)	80	(94%)		
Grade 3 toxicity	10	(5.2%)	0		5% (3%, 7.6%), p<0.00001	
Grade 4 toxicity	1	(0.5%)	0		0.5% (-0.5%, 1.5%), p=0.16	
White blood cell (WBC), at 4 weeks						
Grade 0–2 toxicity	164	(85%)	80	(94%)	8% (4%, 12%), p<0.00001	
Grade 3 toxicity	(8%)		0			
Grade 4 toxicity	0		0			
Febrile neutropenia	0		0			
Bleeding	0		0			

*National Cancer Institute Common Toxicity Criteria: Grade 2: Hb 8.0–9.4g/dl; platelet 50–74x109/L; WBC 2.0–2.9x109/L;

Grade 3: Hb 6.5-7.9g/dl; platelet 25-49x109/L; WBC 1.0-1.9x109/L; and

Grade 4: Hb <6.5q/dl; platelet <25x109/L; WBC<1.0x109/L.

A report from the US Food and Drug Administration (FDA)⁹ indicated that the most common adverse effects based on two four-week RCTs^{2,4} submitted to FDA by Cytogen Corporation shown in table 5.

Though the total incidence of ¹⁵³Sm-lexidronam-related anaemia, thrombocytopenia and leucocytopenia was significantly higher than that in the placebo group, severe toxicity with clinical significance was seen in only 5 per cent and 8 per cent of patients treated

with ¹⁵³Sm-lexidronam for Grade 3 platelet toxicity and Grade 3 white blood cell (WBC) toxicity, respectively.

Toxicity associated with repeated treatment with ¹⁵³Sm-lexidronam

It is noted that, though the prognosis and life expectancy of end-stage cancer patients are generally poor and the majority of patients will receive a single dose, repeated treatment with ¹⁵³Sm-lexidronam remains an issue. In particular, the toxicity associated with repeated injections of ¹⁵³Sm-lexidronam should be investigated.

All three RCTs^{2,4,5} employed a single administration of ¹⁵³Sm-lexidronam, so it is uncertain whether ¹⁵³Sm-lexidronam is safe when given repeatedly. Unfortunately, there is limited data on toxicity of repeat dosing except in animal experiments. The available clinical data were from two unpublished phase I trials submitted to the TGA and a phase I/II study by Alberts et al¹⁰. ¹⁵³Sm-lexidronam administration at 1mCi/kg to 2mCi/kg per dose was repeated at six to eight week intervals for four doses. In the unpublished trials, the lowest WBC count $(1.4x10^{9}/L)$ and the lowest platelet count $(35x10^{9}/L)$ were recorded; both occurred after the first dose. No febrile neutropenia or haemorrhage occurred. Alberts et al reported an increased cumulative toxicity over repeated treatment¹⁰. Forty four per cent of patients experienced Grades 1 and 2 haematological toxicity after the first dose and this increased to 70 per cent by the third dose. However, the severity of the toxicity did not warrant termination of the treatment.

Strontium⁸⁹

Haematological toxicity of Strontium⁸⁹ is summarised in Table 6, based on RCTs^{6.7,8}.

Strontium⁸⁹ treatment significantly increased \geq Grade 2 platelet toxicity, the incidence of haemorrhage, and Grades 1–3 WBC toxicity. The severity of the myelosuppression seen may be related to the high dose-intensity of Strontium⁸⁹ used in the early studies.

The increased adverse events caused by $^{153}\text{Sm-lexidronam}^{2,4,5}$ or Strontium $^{89-6,7,8}$ are compared in Table 7.

Death

Overall, deaths were measured at 6 per cent in the placebo group (n=85), and 12 per cent in the ¹⁵³Sm-lexidronam 1.0mCi/kg group (n=193). As noted in the TGA report, a higher rate of deaths in the ¹⁵³Sm-lexidronam group may be explained by a longer observation period for the majority of patients, as up to 59 per cent of patients in the placebo group crossed over to ¹⁵³Sm-lexidronam treatment after four weeks. Further, according to the investigators, all deaths were due to the progression of the disease and not related to ¹⁵³Sm-lexidronam.

Other adverse events

Other adverse events were reviewed in the TGA clinical evaluation and appear to be insignificant.

In conclusion, ¹⁵³Sm-lexidronam appears to be no worse than Strontium⁸⁹ in terms of haematological toxicity.

	Table 5	Adverse Effects of ¹⁵³ Sm-lexidronam treatment based on two four-week RCTs
--	---------	---

Adverse Effects	¹⁵³ Sm-lexidronam	Placebo	Difference (95%Cl,p)
	(n=199)	(n=90)	
Thrombocytopenia	69.3%	8.9%	60.5% (54.3%, 66.6%),
			p<0.00001
Leucocytopenia	59.3%	6.7%	52.6% (46.6%, 58.7%), p<0.00001
Decrease in haemoglobin	40.7%	23.3%	17.4%(9.5%,25.2%), p<0.000014
Transient pain increase	7%	6%	1.5%(-2.7%,5.7%), p=0.49

Table 6	Haematological toxicity	of Strontium89

Adverse event	Strontium ⁸⁹	Placebo	Difference	
			(95% CI), p value	
Platelet	n=104	n=98		
Grade 1 toxicity	(15.4%)	12 (12.2%)	3.4% (-36.%, 9.9%),	p=0.36
Grade 2 toxicity	(18.2%)	4 (4.1%)	14.2% (8.3%, 20.1%),	p<0.00001
Grade 3 toxicity	15 (14.4%)	1 (1%)	13.4% (8.4%, 18.4%),	p<0.00001
Grade 4 toxicity	7 (6.7%)	1 (1%)	5.7% (2%, 9.4%),	p=0.0024
WBC	n=92	n=83		
Grade 1 toxicity	(25%)	12 (14.4%)	10.5% (2.3%, 18.8%),	p=0.012
Grade 2 toxicity	(18.5%)	1 (1.2%)	17.3% (11.4%, 23.1%),	p<0.00001
Grade 3 toxicity	(7.6%)	0	7.6% (3.8%, 11.4%),	p=0.000019
Grade 4 toxicity	1 (1.1%)	0	1% (-0.4%, 2.6%),	p=0.16
Haemorrhage*	10 (14.9%)	3 (5.1%)	9.8% (2.6%, 17.1%),	p=0.0075
Infection*	9 (13.4%)	7 (11.9%)	1.6% 9-6.6%, 9.8%),	p=0.71

* only reported in RCT⁸

Table 7	Comparative Safety of 153Sm-lexidronam and Strontium89
---------	--

Events		¹⁵³ Sm-lexidronam	Strontium ⁸⁹	
Thrombocy	ytopenia			
Platelet toxi	city			
Grade 2	(50–74x10 ⁹ /L)	60.5%*	14.2%*	
Grade 3	(25-49x10 ⁹ /L)	5%*	13.4%*	
Grade 4	(<25x10 ⁹ /L)	0.5%	5.7*	
Leucocyto	penia			
WBC toxicit	у			
Grade 2	(2.0–2.9x10 ⁹ /L)	52.6%*	17.3%*	
Grade 3	(1.0–1.9x10 ⁹ /L)	8%*	7.6%*	
Grade 4	(<1.0x10 ⁹ /L)		1%	
Decrease in	n haemoglobin			
Grade 2	(8.0–9.4 g/100mL)	17.4%*		
Grade 3	(6.5–7.9 g/100mL)	2%	n/a	
Grade 4	(<6.5 g/100mL)	1%		
Transient pain increase		1%	9.8%*	
Haemorrhag	ge	0	1.6%	
Infection		n/a		

* Compared with placebo control, the difference was statistically significant.

Is it effective?

Main outcome measures

The two RCTs of ¹⁵³Sm-lexidronam versus placebo employed similar outcome measures, while the RCTs of Strontium⁸⁹ versus placebo adopted different outcome measurements. In order to compare ¹⁵³Sm-lexidronam with Strontium⁸⁹, the common endpoints of 'pain relief' (or at least partial improvement) and 'analgesic use' have been employed.

Other outcome measures

'Quality of life' and 'survival' were also reported in Strontium⁸⁹ trials, but not in ¹⁵³Sm-lexidronam trials.

Results

Main outcome measures

Pain relief

Pain relief was measured either by patients or physicians.

In two RCTs^{2,4}, patients' daily score of pain on a scale of 0 to 10 was combined as an overall pain score every seven days, and computed to generate the pain curve. The area under the pain curve (AUPC) for each treatment group was then compared. In addition, physicians' clinical evaluation and global assessment (PGA) on pain relief was also reported. It was based on a six-point scale on the following categories:

- worse, an increased amount of pain and discomfort;
- no change;
- slight relief, some pain and discomfort;
- moderate relief, a noticeable improvement in pain and discomfort;
- marked relief, pain is vastly improved and does not cause discomfort; and
- completely better, total absence of pain and no disruption of normal daily activities.

In three of the RCTs^{6,7,8}, pain relief was measured and reported in different ways (see Table 8 for details). The proportion of patients with at least slight pain relief is categorised as 'partial pain relief' and reported in this initial assessment.

It is recognised that the result of pain relief should be interpreted with caution, as it is inevitably a subjective outcome measure, and pain threshold varies greatly among patients. Nevertheless, all the RCTs included were double blind in design, and took efforts to limit potential bias.

It is noted that in ¹⁵³Sm-lexidronam trials, ¹⁵³Sm-lexidronam was given as a single injection. In the Strontium⁸⁹ trials, a repeated injection at an interval of four to five weeks

was administered, except in one RCT⁸ in which Strontium⁸⁹ was administered as a single injection. The recommended repeated treatment interval in Australia is \geq 8 weeks for ¹⁵³Sm-lexidronam, and \geq 3 months for Strontium⁸⁹ treatment. The results are summarised in Table 8.

Trial	Pain relief	Analgesic use	
(¹⁵³ Sm vs placebo)	Pain relief (including slight to complete improvement), based on PGA	decreased use in ¹⁵³ Sm group, the difference from the placebo group was	
Serafini AN ⁴	at 4 weeks:	not significant at 4 weeks (p>0.093).	
	¹⁵³ Sm: 62% (24/39), p<0.016 placebo: 41% (16/39)		
	at 16 weeks:		
	¹⁵³ Sm: 41% (16/39), p<0.0001 placebo: 3% (1/39)		
(153Sm vs placebo) Quick D ² (abstract)	Substantial relief (much better or completely better), based on visual analog scale (VAS) and pain descriptor scale (PDS)	decreased use was by 37% in ¹⁵³ Sm group, and increased by 26% in placebo group (p<0.05)	
	<u>at 4 weeks</u> :		
	¹⁵³ Sm: 55.8% (53/95), p<0.001 placebo: 32.6%(15/46)		
(⁸⁹ Sr vs placebo)	Pain relief (≥ Grade 3),assessed by the numerical weighting system (Grades 1–5)	decreased use of analgesics is include in the grading system, which was	
Lewington VJ ⁶ *	<u>at 5 weeks</u> :	significantly different from the placebo group.	
C C	⁸⁹ Sr: 67% (8/12), p<0.01 placebo: 20% (3/15)		
	Substantial relief (≥ Grade 4)		
	<u>at 5 weeks</u> :		
	⁸⁹ Sr: 41.6% (5/12), p<0.01 placebo: 6.7% (1/15)		
	complete relief (Grade 5)		
	<u>at 5 weeks</u> :		
	⁸⁹ Sr: 33.3% (4/12), p<0.01 placebo: 0%		
(89Sr vs placebo)	Pain relief, based on patients' report, no details given	not reported	
Buchali K ⁷ *	<u>at?years</u>		
	⁸⁹ Sr: 28% (7/25), p=0.06 placebo: 45.8% (11/24)		
(89Sr vs placebo)	Partial relief, (>50% improve), based on pain severity score (0–4) & frequency score (0–4) for each initial pain site	Reduced analgesic use by at least 50% at 4 months	
	<u>at 4 months</u> :	⁸⁹ Sr: 23% p<0.05 placebo: 0%	
Porter AT ⁸ *	⁸⁹ Sr: 83% (56/67), p=0.43 placebo: 78% (46/59)	at 6 months	
	at 6 months:	⁸⁹ Sr: 30% p=0.036 placebo: 18%	
	⁸⁹ Sr: 82% (55/67), p<0.0001 placebo: 49% (29/59)	discontinued analgesic use	
	complete relief, (pain free)	at 4 months	
	at 4 months:	⁸⁹ Sr: 10% p=0.024 placebo: 3%	
	⁸⁹ Sr: 58% (39/67), NS placebo: 58% (34/59)	at 6 months	
	at 6 months:	⁸⁹ Sr: 17% p=0.024 placebo: 5%	
	⁸⁹ Sr: 42% (28/67), p=0.06 placebo: 30% (18/59)	-	

Table 8 Main outcomes

* results are re-calculated on 'intention-to-treat' population. ?: unable to identify from study when results were reported

Comparison of ¹⁵³Sm-lexidronam and Strontium89 in pain relief

To compare the effectiveness of ¹⁵³Sm-lexidronam with Strontium⁸⁹ in pain relief via the common comparator, the comparability of the placebo groups used in ¹⁵³Sm-lexidronam

versus placebo trials and Strontium⁸⁹ versus placebo trials have been examined and presented in Table 9.

¹⁵³ Sm-lexidronam ^b			Strontium ⁸⁹ c		
Trial	¹⁵³ Sm 1.0mCi/kg	Placebo	Placebo	Strontium ⁸⁹	
Serafini AN ⁴ at 4 weeks	62% (24/39)	41% (16/39)	20% (3/15)	67% (8/12)	Lewington VJ ⁶ at 5 weeks
Quick D ² (abstract) at 4 weeks	55.8% (53/95)	32.6% (15/46)	45.8% (11/24)	28% (7/25)	Buchali K7 at ? weeks
			49% (29/59)	82% (55/67)	Porter AT ⁸ at 6 months
		pooled	pooled		
		36.5% (31/85)	43.9% (43/98)		
		difference:7.4	% (2.6%–14%)		
		Odds ratio: 0.73 (0.48-1.12)			
		P=0.	15		

Table 9 Comparison of ¹⁵³Sm-lexidronam and Strontium⁸⁹ in pain relief^a

a. The common endpoint used is partial pain relief.

b. For ¹⁵³Sm-lexidronam trials, results at four weeks after a single injection are used because detailed results at 16 weeks were not available in one RCT².

c. For Strontium⁸⁹ trials, results reported at the end of the trials were used, as no common reporting time could be identified.

NB. Patients enrolled in both ¹⁵³Sm-lexidronam with Strontium ⁸⁹ trials had previous hormone therapy, chemotherapy, local radiotherapy, and were receiving analgesics.

It is demonstrated that there is no statistically significant difference between the placebo groups used in ¹⁵³Sm-lexidronam trials and Strontium⁸⁹ trials. Therefore, the approach of using placebo control as a common comparator to compare ¹⁵³Sm-lexidronam with Strontium⁸⁹ is justified.

The results of the clinical effectiveness comparison of ¹⁵³Sm-lexidronam and Strontium⁸⁹ in pain relief are based on evidence generated from RCTs using meta-analysis. A random effect model is used due to a statistically significant heterogeneity within both trial groups. The quality of the randomised Strontium⁸⁹ trials included is as discussed previously. However, it should be noted that the comparative effectiveness between ¹⁵³Sm-lexidronam and Strontium⁸⁹ is not based on 'head-to-head' comparative RCTs but an indirect comparison. Therefore the resulting evidence is of low level (NHMRC Level III-3).

Results from meta-analysis

	¹⁵³ Sm-lexidronam versus placebo arm ^{2,4}	Strontium ⁸⁹ versus placebo arm ^{6,7,8}
Pain relief	Odds ratio: 2.52	Odds ratio: 2.49
(partial)	(1.42–4.46)	(0.46–13.47)
	p=0.0015	p=0.29
	Risk difference	Risk difference
	22.5%	20.3%
	(9.3%–35.7%)	(-15.3%–55.9%)
	p=0.00087	p=0.26

The meta-analysis showed that 22.5 per cent more patients with additional ¹⁵³Smlexidronam treatment achieved pain relief to some degree, compared to the placebo group with analgesic only. The decreased overall effectiveness of Strontium⁸⁹ is due to the conflicting results observed in RCT⁷. This is confirmed by cumulative meta-analysis. If the Buchali et al trial was excluded, a significant improvement in pain relief would be achieved in 35.4 per cent more patients in the Strontium⁸⁹ group compared with placebo, p<0.00001 (odds ratio 5.2, 95% CI: 2.5–10.8, p=0.00001)⁷.

Given that the results of the placebo groups from both ¹⁵³Sm-lexidronam and Strontium⁸⁹ arms are equivalent, it appears that 2.2 per cent (22.5% - 20.3% = 2.2%) more patients treated with ¹⁵³Sm-lexidronam achieved pain relief to some degree when compared with Strontium⁸⁹ treatment. However, the difference between ¹⁵³Sm-lexidronam and Strontium⁸⁹ treatment in relieving bone pain due to skeletal metastases is not statistically significant (p=0.62).

Comparison of ¹⁵³Sm-lexidronam and Strontium⁸⁹ in analgesic use

The trial conducted by Serafini et al⁴ failed to demonstrate a decreased use of analgesics following ¹⁵³Sm-lexidronam treatment, while the trial conducted by Quick et al² showed a significantly reduced use of analgesics in ¹⁵³Sm-lexidronam treated patients^{2,3}. Two of the three Strontium⁸⁹ trials^{6,8} also observed a significant reduction in analgesics consumption. However, no common endpoint could be used to make a precise comparison.

Other outcomes

The ¹⁵³Sm-lexidronam trials did not report patients' 'quality of life' or 'survival' data. One Strontium⁸⁹ trial⁸ showed that at three months a significant improvement in 'quality of life' was achieved in patients treated with Strontium⁸⁹, in terms of both alleviation of pain and improvement in physical activity (p<0.05), and in the overall estimate (p=0.006).

The 'survival rate' at two years post-Strontium⁸⁹ treatment was significantly higher than that of the placebo group, ie 46 per cent versus 4 per cent⁷. However, confounding factors such as stage of the disease, natural history, and the extension of metastases were identified, and the result was undermined. In one RCT⁸ the median survival time was longer in the placebo group (34 weeks) in comparison with the Strontium⁸⁹ group (27 weeks). However, the difference was not statistically significant.

Effectiveness in relief of bone pain due to skeletal metastases from cancer other than prostate origin

Based on the available publications, the majority of patients that received ¹⁵³Smlexidronam treatment suffered from bony metastases from prostate cancer. ¹⁵³Smlexidronam has also been used for the management of bone pain due to skeletal metastases associated with other cancers, eg breast and lung cancers. However, published information, especially high quality data, is limited.

Across the two ¹⁵³Sm-lexidronam RCTs referenced in this report^{4,5}, 288 out of 373 patients had prostate cancer, 57 had breast cancer, eight had lung cancer, and 20 had other malignancies. However, the trial results were reported as an overall outcome without addressing subgroups of patients with different cancers. Although the mechanism of action of ¹⁵³Sm-lexidronam in the treatment of bone pain due to skeletal metastases may be less relevant to the type of primary cancer, the available treatment options and strategies are vastly different for cancers of various origins. Therefore, the

clinical effectiveness of ¹⁵³Sm-lexidronam in managing bony metastases from breast and lung cancer should be addressed, both to identify the clinical place of ¹⁵³Sm-lexidronam for the management of bony metastases from these cancers and to justify the indication and any restrictions that might be applicable for ¹⁵³Sm-lexidronam treatment.

A number of controlled/uncontrolled clinical studies have been retrieved, in which patients with prostate cancer, breast cancer, lung cancer and other cancers were recruited. The characteristics and the reported results are summarised in Table 10.

The data revealed:

- ¹⁵³Sm-lexidronam appears to be at least as effective as Strontium⁸⁹ in managing painful bone metastases.
- ¹⁵³Sm-lexidronam is most frequently used for the treatment of bony metastases from prostate cancer, and has also been used for managing bony metastases from cancers of the breast, lung and of other origins.
- Data from two RCTs^{4,5} suggest that ¹⁵³Sm-lexidronam is at least as effective in the treatment of bone pain due to skeletal metastases of breast cancer compared with those of prostate cancer.
- There is insufficient data to demonstrate that ¹⁵³Sm-lexidronam can benefit patients with bone pain due to skeletal metastases from lung cancer.
- The pain relief effect lasts for at least four weeks after a single injection and can be sustained up to 16 weeks⁴.
- It is unclear what previous treatment was received by patients with prostate cancer, breast cancer or lung cancer. Therefore, it is difficult to define at what stage of disease or treatment ¹⁵³Sm-lexidronam is indicated for patients in each group from the data.
- There is a lack of data to confirm an improvement in patients' quality of life, though this is a likely consequence of pain relief. There is no evidence to indicate any benefit in survival.

Study	Quality	Cancer origin	Treatment	Outcome (pain relief)
Resche I et al ⁵ , 1997	Level II	prostate: n=75 breast: n=36 lung: n=2 others: n=9	previous treatment: surgery 78–81%, hormone 84–86%, radiation 76–84% chemo 27–36% 153Sm treatment (single injection) 153Sm 0.5mCi/kg, n=55 1.0mCi/kg, n=59	patients with breast cancer seemed to respond better to 1.0mci/kg dosage (80%) than to 0.5mCi/kg dosage, while the difference in dose response among prostate cancer patients was less profound; no greater myelotoxicity seen though breast cancer patients likely had chemotherapy previously overall outcome: ¹⁵³ Sm is effective for relief from bone pain due to skeletal metastases

Table 10	153Sm-lexidronam—managing bone pain due to skeletal metastases from various cancer
	types

Study	Quality	Cancer origin	Treatment	Outcome (pain relief)
Serafini AN et al ⁴ , 1998	Level II	prostate: n=80 breast: n=21 lung: n=6 others: n=11	<u>previous treatment</u> [®] : surgery 85–95% hormone 82–85%, radiation 73–77%, chemo 23–38% <u>¹⁵³Sm treatment</u> (single injection) ¹⁵³ Sm 0.5mCi/kg, n=40 1.0mCi/kg, n=39 placebo n=39	compared with prostate cancer, patients with breast cancer showed greater treatment response, less response seen in patients with lung cancer and other cancers
BA-105 ^{b11}	Level IV	breast: n=23	previous treatment not clear 153Sm treatment dose ascending, dose repeating study	pain relief seen in 9 (39%) patients with 5 (22%) reduced opioids no withdrawal due to toxicity
BA-107 ^{b8}	Level IV	prostate: n=21 breast: n=1	previous treatment not clear <u>153Sm treatment</u> dose ascending study (up to 1.5mCi/kg)	no efficacy data reported, overall profile of toxicity presented
Turner JH et al ¹³ , 1989	Level IV	prostate: n=10 breast: n=15 others: n=10	previous treatment hormonal 25 chemo 19 radio 21 none 2 153 Sm treatment 740 MBq (11 patients had second dose)	overall results were reported without specifically addressing breast cancer subgroup 22 patients achieved pain relief
Turner JH et al ¹⁴ , 1991	Level IV	prostate: n=11 breast: n=9 others: n=3	previous treatment hormonal 20 chemo 10 radio 15 none 3 153Sm treatment 740 MBq (11 patients had second dose)	overall results were reported without specifically addressing breast cancer subgroup 14 patients achieved pain relief
Albert AA et al ¹⁰ ,1997	Level III- 2	prostate: n=56 breast: n=12 lung: n=7 others: n=7	previous treatment chemo 9 radio 36 none 37 <u>153Sm treatment</u> 0.75, 1.5, 3 mCi/kg (35 patients had more than one dose)	overall results were reported without specifically addressing breast cancer subgroup 78–95% patients achieved adequate pain control; the longest duration of efficacy was 56 days at a dose of 1.5mCi/kg

Table 10	153Sm-lexidronam—managing bone pain due to skeletal metastases from various cancer
	types (cont.)

a. the range of % represents % of patients in 1.0mCi/kg group and 0.5mCi/kg group b. data submitted to the TGA, no publication details available

What are the economic considerations?

Costs per treatment associated with ¹⁵³Sm-lexidronam are as follows:

Total:	\$1,991.65
medical consultation fee (MBS 110 or 104):	(up to) \$112.65
contingency fee (10% unit cost):	\$166.00
storage, administration and disposal:	\$54.00
¹⁵³ Sm-lexidronam, including delivery:	\$1,659.00

Costs per treatment associated with the comparator, Strontium⁸⁹ are as follows:

Total:	\$3,335.40
medical consultation fee (MBS 110 or 104):	(up to) \$112.65
contingency fee (5% unit cost):	\$149.75
storage, administration and disposal:	\$78.00
Strontium ⁸⁹ , including delivery (MBS 16105):	\$2,995.00

If ¹⁵³Sm-lexidronam is considered to be at least as effective as Strontium⁸⁹, then a cost minimisation analysis is appropriate. Given that the proposed fee for ¹⁵³Sm-lexidronam is much lower than the fee for Strontium⁸⁹ listed on the MBS (\$1,991.65 versus \$3,335.40) and the lack of costing data, an economic analysis has not been conducted.

In the majority of patients, a single dose of ¹⁵³Sm-lexidronam is expected. However, ¹⁵³Sm-lexidronam can be administered repeatedly at intervals of \geq 8 weeks. Strontium⁸⁹ is recommended for repeated dosing at intervals of \geq 3 months. Depending on the patients' life expectancy, the number of treatments required per year could be up to 6.5 and 4.3 for ¹⁵³Sm-lexidronam therapy and Strontium⁸⁹ therapy respectively. In recognising that this could represent the worst scenario, expert opinion was sought. It is concluded that treatment comprising repeated administration of ¹⁵³Sm-lexidronam and Strontium⁸⁹ is likely to involve three doses and two doses respectively. The resulting total treatment costs are therefore:

Likely scenario:

 153 Sm-lexidronam: \$1,991.65 x 3 = \$5,974 per patient per year; and

Strontium⁸⁹: \$3,335.40 x 2 = \$6,670 per patient per year.

Worst scenario:

 153 Sm-lexidronam: \$1,991.65 x 6.5 = \$12,946 per patient per year; and

Strontium⁸⁹: $$3,335.40 \times 4.3 = $14,342$ per patient per year.

Other considerations

Although ¹⁵³Sm-lexidronam was approved by the TGA for the treatment of metastatic bone lesions, this assessment suggested that the indication of ¹⁵³Sm-lexidronam should be restricted to painful bony metastases from carcinoma of the prostate or the breast, as there are insufficient data, at the present time, to support its use for other disease sites.

The adverse events associated with repeated dosing of ¹⁵³Sm-lexidronam should be monitored, as there is limited clinical experience.

Conclusions

Safety

¹⁵³Sm-lexidronam appears, from the available evidence, to be no worse than Strontium⁸⁹ in terms of haematological toxicity and other adverse events. However, it should be noted that, though the prognosis and life expectancy of end-stage cancer patients are generally poor and the majority of patients will receive a single dose, repeated treatment of ¹⁵³Sm-lexidronam remains an issue. In particular, the toxicity associated with repeated injections of ¹⁵³Sm-lexidronam should be investigated.

Effectiveness

It is demonstrated that ¹⁵³Sm-lexidronam is at least as effective as Strontium⁸⁹ in relieving bone pain due to skeletal metastases from carcinoma of the prostate. In addition, ¹⁵³Sm-lexidronam has also been demonstrated to be effective in relieving bone pain due to skeletal metastases from carcinoma of the breast.

Decreased use of analgesics following ¹⁵³Sm-lexidronam administration was demonstrated in one of the two RCTs². However, no comparison could be made with Strontium⁸⁹ due to the different endpoints used in reporting results.

Cost-effectiveness

As ¹⁵³Sm-lexidronam seems as effective as Strontium⁸⁹ in pain relief and no worse than Strontium⁸⁹ in terms of toxicity, a cost minimisation analysis is appropriate. However, as the proposed fee for ¹⁵³Sm-lexidronam is much lower than that of Strontium⁸⁹ and insufficient costing data has been provided, an economic analysis has not been conducted.

Other considerations

Although ¹⁵³Sm-lexidronam was approved by the TGA for the treatment of metastatic bone lesions, this assessment suggests that the indication of ¹⁵³Sm-lexidronam should be restricted to painful bony metastases from carcinoma of the prostate or the breast, as there are insufficient data, at the present time, to support its use for other disease sites.

The adverse events associated with repeated dosing of ¹⁵³Sm-lexidronam should be monitored, as there is limited clinical experience.

Recommendation

On the basis of evidence supporting its safety, effectiveness and cost-effectiveness, the supporting committee for this application recommends that ¹⁵³Sm-lexidronam be subsidised for the relief of bone pain in patients with skeletal metastases (as indicated by a positive bone scan) from the following malignancies:

- i. carcinoma of the prostate, where hormonal therapy has failed; or
- ii. carcinoma of the breast, where hormonal therapy and chemotherapy have failed;

and either:

- a. the disease is poorly controlled by conventional radiotherapy; or
- b. conventional radiotherapy is inappropriate, due to the wide distribution of sites of bone pain.

Appendix A MSAC terms of reference and membership

The terms of reference of MSAC are to advise the Commonwealth Minister for Health and Aged Care on:

- the strength of evidence pertaining to new and emerging medical technologies and procedures in relation to their safety, effectiveness and cost-effectiveness and under what circumstances public funding should be supported;
- which new medical technologies and procedures should be funded on an interim basis to allow data to be assembled to determine their safety, effectiveness and cost-effectiveness; and
- references related either to new and/or existing medical technologies and procedures.

The membership of MSAC comprises a mix of clinical expertise covering pathology, nuclear medicine, surgery, specialist medicine and general practice, plus clinical epidemiology and clinical trials, health economics, consumers, and health administration and planning:

Member	Expertise
Professor David Weedon (Chair)	pathology
Ms Hilda Bastian	consumer health issues
Dr Ross Blair	vascular surgery (New Zealand)
Mr Stephen Blamey	general surgery
Dr Paul Hemming	general practice
Dr Terri Jackson	health economics
Professor Brendon Kearney	health administration and planning
Mr Alan Keith	Assistant Secretary, Diagnostics and Technology Branch, Commonwealth Department of Health and Aged Care (from 3 May 1999)
Dr Richard King	gastroenterology
Dr Michael Kitchener	nuclear medicine
Professor Peter Phelan	paediatrics
Dr David Robinson	plastic surgery
Ms Penny Rogers	Assistant Secretary, Diagnostics and Technology Branch, Commonwealth Department of Health and Aged Care (until 3 May 1999)
Associate Professor John Simes	clinical epidemiology and clinical trials
Dr Bryant Stokes	neurological surgery, representing the Australian Health Ministers' Advisory Council (from 1 January 1999)
Dr Doris Zonta	population health, representing the Australian Health Ministers' Advisory Council (until 31 December 1998)

Appendix B Supporting committee

Supporting committee for MSAC application 1016 Samarium¹⁵³-lexidronam for bone pain due to skeletal metastases

Dr Richard King (Chair)

MBBS, FRACP Director, General Medical and Emergency Medicine, Southern Health Care Network, Victoria

Mr Ian Burnard

Consumer Representative

Dr Graeme Dickie MBBS, MBA,

FRACP, FRACR Clinical Associate Professor, University of Queensland; Deputy Director, Division of Oncology, Royal Brisbane Hospital

Assoc Prof Gillian Duchesne BSc

(Hons), MB, MD, FRCR, FRACR Associate Professor, University of Melbourne; Radiation Oncologist, Peter MacCallum Cancer Institute

Dr Peter Ellis

MBBS, FRACP, Mmed (Clin Epi) Research Fellow, Royal Prince Alfred Hospital, Sydney

Dr John Primrose

MBBS (Hons), FRACR Senior Medical Adviser, Commonwealth Department of Health and Aged Care member of MSAC

nominated by the Australian Cancer Society

nominated by the Australian and New Zealand Association of Physicians in Nuclear Medicine

nominated by the Royal Australasian College of Radiologists

nominated by the Royal Australasian College of Physicians

adviser to MSAC

Abbreviations

AIHW	Australian Institute of Health and Welfare
ARTG	Australian Register of Therapeutic Goods
AUPC	area under the pain curve
EDTMP	ethyl diamine tetramethylene phosphonic acid
FDA	US Food and Drug Administration
HBRT	hemi-body radiation therapy
LRT	local external-bean radiotherapy
MBS	Medicare Benefits Schedule
MSAC	Medicare Services Advisory Board
NHMRC	National Health and Medical Research Council
PGA	physicians' clinical evaluation and global assessment
RCTs	randomised controlled trials
TGA	Therapeutics Goods Administration
WBC	white blood cell

- 1. Australian Institute of Health and Welfare, Cancer in Australia, 1985–1989. Canberra: AIHS, 1991.
- 2. Quick D et al. Efficacy and safety of ¹⁵³Sm-EDTMP in alleviating the pain of bone metastases in patients with prostate carcinoma. Proceedings of the Annual Meeting American Society of Clinical Oncology, 1996; 15:A1654
- 3. National Health and Medical Research Council, A guide to the development, implementation and evaluation of clinical practice guidelines. Canberra: NHMRC, 1999.
- 4. Serafini AN, Houston SJ, et al. Palliation of pain associated with metastatic bone cancer using samarium-¹⁵³ lexidronam: A double-blind placebo-controlled clinical trial. Journal of Clinical Oncology, 1998; 16(4): 1574–1581
- 5. Resche I, Chatal J-F, et al. A dose-controlled study of ¹⁵³Smethylenediaminetetramethylene phosphonate (EDTMP) in the treatment of patients with painful bone metastases. European Journal of Cancer, 1997; 33(10): 1583–1591
- Lewington VJ, McEwan AJ, et al. A prospective, randomised double-blind crossover study to examine the efficacy of strotium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone. European Journal of Cancer, 1991; 27(8): 954–958
- 7. Buchali K, Correns HJ, et al. Results of a double-blind study of 89-strontium therapy of skeletal metastases of prostatic carcinoma. European Journal of Nuclear Medicine, 1988; 14: 349–351
- 8. Porter AT, McEwan AJB, et al. Results of a randomised phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. International Journal of Radiation Oncology, Biology, Physics, 1993; 25(5): 805–813
- 9. US Federal Drugs Administration, FDA News and Product Notes, Formulary July 1997. FDA, 1997.
- Alberts AS, Smit BJ, et al. Dose response relationship and multiple dose efficacy and toxicity of samarium-153-EDTMP in metastatic cancer to bone. Radiotherapy and Oncology, 1997; 43: 175–17
- 11. BA-105 unpublished trial report submitted to the Therapeutic Goods Administration Australia.
- 12. BA-107 unpublished trial report submitted to the Therapeutic Goods Administration Australia.
- 13. Turner JH, Cloringbold PG, et al. A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. Journal of Clinical Oncology, 1989; 7(12): 1926–1931
- 14. Turner JH et al. A phase II study of treatment of painful multifocal skeletal metastases with single and repeated dose samarium-153 EDTMP. European Journal of Cancer, 1991; 27: 1084–1086